statsmodels.stats.contingency_tables.Table

class statsmodels.stats.contingency_tables.Table(table, shift_zeros=True)[source]

A two-way contingency table.

Parameters:

table : array_like

A contingency table.

shift_zeros : bool

If True and any cell count is zero, add 0.5 to all values in the table.

Notes

The inference procedures used here are all based on a sampling model in which the units are independent and identically distributed, with each unit being classified with respect to two categorical variables.

References

Definitions of residuals:
https://onlinecourses.science.psu.edu/stat504/node/86

Attributes

table_orig (array_like) The original table is cached as table_orig.

Methods

from_data(data[, shift_zeros]) Construct a Table object from data.
test_nominal_association() Assess independence for nominal factors.
test_ordinal_association([row_scores, …]) Assess independence between two ordinal variables.

Methods

from_data(data[, shift_zeros]) Construct a Table object from data.
test_nominal_association() Assess independence for nominal factors.
test_ordinal_association([row_scores, …]) Assess independence between two ordinal variables.

Properties

chi2_contribs Returns the contributions to the chi^2 statistic for independence.
cumulative_log_oddsratios Returns cumulative log odds ratios.
cumulative_oddsratios Returns the cumulative odds ratios for a contingency table.
fittedvalues Returns fitted cell counts under independence.
independence_probabilities Returns fitted joint probabilities under independence.
local_log_oddsratios Returns local log odds ratios.
local_oddsratios Returns local odds ratios.
marginal_probabilities Estimate marginal probability distributions for the rows and columns.
resid_pearson Returns Pearson residuals.
standardized_resids Returns standardized residuals under independence.