ProteoWizard
IInterpolation.hpp
Go to the documentation of this file.
1//
2// $Id$
3//
4//
5// Original author: Austin Keller <atkeller .@. uw.edu>
6//
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10//
11// http://www.apache.org/licenses/LICENSE-2.0
12//
13// Unless required by applicable law or agreed to in writing, software
14// distributed under the License is distributed on an "AS IS" BASIS,
15// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16// See the License for the specific language governing permissions and
17// limitations under the License.
18//
19
20#ifndef _IINTERPOLATION_HPP
21#define _IINTERPOLATION_HPP
22
23/// Interface for interpolating between points in a discrete data set.
25{
26public:
27 virtual ~IInterpolation() {}
28
29 /// Indicates whether the algorithm can provide an interpolated derivative.
30 virtual bool IsDifferentiable() = 0;
31
32 /// Indicates whether the algorithm can provide an interpolated integral.
33 virtual bool IsIntegrable() = 0;
34
35 /// Derivative at the point x.
36 /// @param x Point at which to integrate.
37 /// @return Value of interpolated derivative.
38 virtual double Differentiate(double x) = 0;
39
40 /// Definite integral between points a and b over function f
41 /// @param[in] a Lower bound of the integration interval [a, b].
42 /// @param[in] b Upper bound of the integration interval [a, b].
43 /// @return Value of the interpolated integral.
44 virtual double Integrate(double a, double b) = 0;
45
46 /// Interpolate at point x.
47 // @param[in] x Point x to interpolate at.
48 // @return Interpolated value f(x).
49 virtual double Interpolate(double x) = 0;
50};
51
52#endif // _IINTERPOLATION_HPP
KernelTraitsBase< Kernel >::space_type::abscissa_type x
Interface for interpolating between points in a discrete data set.
virtual ~IInterpolation()
virtual bool IsIntegrable()=0
Indicates whether the algorithm can provide an interpolated integral.
virtual bool IsDifferentiable()=0
Indicates whether the algorithm can provide an interpolated derivative.
virtual double Differentiate(double x)=0
Derivative at the point x.
virtual double Integrate(double a, double b)=0
Definite integral between points a and b over function f.
virtual double Interpolate(double x)=0
Interpolate at point x.